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Measuring flood underinsurance in the USA
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David Zink2

Flood insurance could mitigate the negative shock from climate-induced 
disasters, yet many households are still not covered. Here, using data on 
expected flood damage and National Flood Insurance Program policies, we 
provide estimates of annual flood risk protection gaps and underinsurance 
among single-family residences in the contiguous USA. Annually, 70% 
(US$17.1 billion) of total flood losses would be uninsured. Underinsurance, 
defined as protection gaps among properties whose current coverage 
is under the optimal level, totals US$15.7 billion annually. Among at-risk 
households, 88% are underinsured and average underinsurance is US$7,208 
per year. Underinsurance persists both inside and outside the Federal 
Emergency Management Agency’s special flood hazard areas, suggesting 
frictions in the provision of risk information and regulatory compliance. 
Underinsurance falls disproportionately on low-income communities. 
At least 70% of at-risk households would benefit from purchasing flood 
insurance, even as prevailing prices rise.

Homeowners insurance mitigates financial risks from natural disas-
ters collectively faced by households, lenders and investors in the 
USA, but does not cover flooding, which has large adverse economic 
consequences on many parts of the economy1–25. The National Flood 
Insurance Program (NFIP) represents over 95% of the flood insurance 
market and is the primary financial protection against US$24.4 billion 
of expected annual flood-related property losses for single-family 
residences (SFRs). However, large claims relative to premiums col-
lected have left the NFIP in financial stress26. Quantifying this insur-
ance crisis is necessary to identify solutions for mitigation of financial 
losses from floods.

This Article asks if households’ flood insurance coverage would 
protect against expected flood losses and if the resulting protection 
gaps are economically inefficient. Existing studies measure damages 
from floods, document the inequitable distribution of damages faced 
by poorer communities and identify a mismatch between flood risks 
and the Federal Emergency Management Agency’s (FEMA) flood maps, 
which provide information about flood risk and set insurance purchase 
requirements27–30. More closely related to this Article, earlier works 
find that NFIP insurance take-up is low, even when premiums are sub-
stantially lower than average payouts, normalized for coverage31,32. 
Furthermore, demand for flood insurance appears to be price inelas-
tic, suggesting that homeowners are underinsured against flood risk 

potentially because of non-price factors such as information frictions 
and behavioural biases30,33–36. Existing literature acknowledges insur-
ance gaps and speculates that underinsurance constitutes a non-trivial 
amount of these gaps37,38. This Article advances this field by providing 
quantitative estimates of these objects and documenting empirical 
facts about their distribution across geography and communities’ 
socioeconomic characteristics.

First, we measure protection gaps by aggregating individual prop-
erties’ expected flood damages that exceed existing flood insurance 
coverage. Second, we estimate flood underinsurance by identifying 
protection gaps for properties that have suboptimal rates of full cover-
age as suggested by existing economic models of insurance demand. 
Third, we discuss the distribution of underinsurance by event severity, 
location, income and race. Last, we explore inaccurate climate beliefs 
as determinants of low insurance take-up and discuss the implications 
of our results for insurance pricing and flood risk management.

Results
We measure flood protection gaps and underinsurance for SFRs in 
the contiguous USA by combining current estimates of property-level 
flood damages in US dollars from the First Street Foundation (FSF)  
with administrative data on flood insurance policies from the NFIP. 
The NFIP policies provide coverage for flood damages to structures, 
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is optimal. Households in this sample should be fully insured against 
flood losses based on a frictionless economic model with rational 
agents and complete markets. We count households who deviate  
from this benchmark due to any constraints as underinsured. For 
example, behavioural frictions (such as misunderstanding flood  
risks or insurance pricing), institutional constraints (such as NFIP 
maximum coverage of US$250,000) and financial constraints 
(including lack of liquidity or credit access) might lead households to  
hold less coverage than the model optimum. As this Articleʼs primary 
goal is to estimate aggregate flood underinsurance relative to the 
stated economic framework, we do not decompose underinsurance by 
specific constraints. Instead, we discuss descriptive evidence related 
to information and institutional constraints.

Estimating underinsurance requires two steps (Methods). First, 
we identify households who have optimal demand for full coverage 
by comparing premiums from the NFIP and expected damages from 
the FSF. Second, we measure the protection gap as the area under the 
exceedance probability curve that is above the property’s coverage 
limit (Extended Data Fig. 1). Exceedance probability measures the like-
lihood of annual damages above a specific amount. Our data include 
expected flood damages for select severe events, which plot a subset 
of points on the exceedance probability curve. Using these events, 
we calculate a lower Riemann sum to estimate a lower bound for the 
protection gap and underinsurance. We do not consider households 
who optimally demand partial insurance coverage as being underin-
sured because household-level wealth data, which we do not have, is 
required to make this determination. Excluded households may still 

but exclude contents. As we do not observe the precise address of poli-
cies, we assign the highest coverage limits to the homes with the largest 
expected losses within a local area. This assumption forces the riskiest 
properties to have the most coverage and gives the lower bound on 
estimated protection gaps and underinsurance.

For each property, we define the protection gap as the expected 
amount of flood losses that would not be covered by flood insurance 
across the distribution of flood events. Protection gaps provide a 
descriptive measure, but the economic implications are unclear as 
households may rationally purchase less coverage. Therefore, we 
define economic underinsurance as the expected protection gap faced 
by households for whom it is optimal to purchase full coverage for 
their home.

Based on existing economic models of rational insurance 
demand39,40, the annual premium being less than or equal to expected 
losses in a year is a sufficient condition for households to optimally 
choose full coverage for the property, under the assumption that 
households are risk-averse and markets are complete. Intuitively, a 
household should fully insure their home if the benefit of holding 
flood insurance (the average annual losses (AAL)) exceeds the cost (the 
annual premium). We assume that households can fully insure their 
home beyond the NFIP maximum coverage limit of US$250,000 by 
purchasing coverage on the private market at similar rates per dollar of 
coverage. Our results are robust to relaxing this assumption (Methods 
and Extended Data Tables 1 and 2).

We interpret underinsurance as the amount of uninsured flood 
losses households face as a result of not holding full coverage when it 

Table 1 | Flood protection gaps and underinsurance

All SFRs AAL > 0 SFHA Non-SFHA

(a) Protection gaps for all SFRs

n 92,251,863 5,984,218 1,746,807 4,237,411

Share insured 0.037 0.329 0.595 0.22

Total estimated AAL (US$2023) 24,392,317,257 24,392,317,257 10,193,731,941 14,198,585,315

Protection gap

  Share with protection gap 0.055 0.845 0.761 0.88

  Mean (US$2023) 186 2,865 3,012 2,804

  Standard deviation (US$2023) 3,411 13,103 17,280 10,925

  Median (US$2023) 0 350 313 362

  Total (US$2023) 17,143,450,430 17,143,450,369 5,260,776,693 11,882,673,676

  As share of AAL 0.703 0.703 0.516 0.837

Percentage of total protection gap 100 100 30.7 69.3

(b) Underinsurance for SFRs for which full coverage is optimal

n 2,175,703 741,970 1,433,733

Share insured 0.4 0.687 0.252

Total estimated AAL (US$2023) 22,110,475,680 9,108,609,445 13,001,866,234

Underinsurance

  Share underinsured 0.884 0.798 0.928

  Mean (US$2023) 7,208 6,360 7,647

  Standard deviation (US$2023) 20,981 26,053 17,781

  Median (US$2023) 1,661 966 1,888

  Total (US$2023) 15,682,749,721 4,718,760,433 10,963,989,289

  As share of AAL 0.709 0.518 0.843

Percentage of total underinsurance 100 30.1 69.9

This table presents statistics on flood protection gaps and underinsurance. Statistics for (a) are derived from the full sample of SFRs in column 1 and separate subsamples in the last three 
columns: SFRs with positive flood risk, SFRs inside SFHAs and SFRs outside SFHAs. Dollar values are presented in 2023 US$. Statistics for (b) are derived from the sample of positive flood risk 
SFRs for which purchasing full coverage of flood insurance is optimal. We assume full coverage is optimal for an SFR if the annual premium is less than or equal to AALs.
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be underinsured, which, if included in the analysis, will enlarge our 
estimate of economic underinsurance.

Protection gaps
Among 92.3 million SFRs in the USA, nearly 6 million face AAL that  
are greater than zero. Among these residences, the average pro-
tection gap is US$2,865 (2023 US$) with 85% of at-risk SFRs facing  
positive uninsured losses (Table 1(a)). In total, US$17.1 billion of 
expected flood losses would be uninsured annually, representing 70% 
of US$24.4 billion of expected flood damages.

We find that 69% of the total protection gap falls outside Special 
Flood Hazard Areas (SFHAs), where 77% of SFRs do not hold flood 
insurance. Still, 76% of SFRs inside SFHAs face protection gaps totalling 
US$5.3 billion. These gaps imply that 52% of expected flood losses inside 
SFHAs remain uninsured. SFHAs provide information about flood risk 
by mapping floodplains with at least a 1% annual probability of flood-
ing, and mandate flood insurance coverage in these high risk areas for 
federally regulated mortgages. The large prevalence of protection gaps 
inside SFHAs suggests that these two purposes function imperfectly. 
Moreover, uninsured SFRs account for 82% (US$14.1 billion) of the 
protection gap, while insured SFRs account for 18% (Table 2(a)).

Economic underinsurance
To understand whether the protection gap is economically inefficient, 
we focus on households for whom purchasing full flood insurance 
coverage would be optimal. We estimate counterfactual premiums 
for currently uninsured households using the average premium paid 
per dollar of coverage by insured households in the same census tract 
and SFHA. In total, 2,175,703 SFRs have positive expected flood dam-
ages and face annual premiums that are lower than or equal to AAL. 
We measure underinsurance as protection gaps for this sample of 
households.

Underinsurance totals US$15.7 billion (or 91% of the total protec-
tion gap) and the average underinsurance of US$7,208 is more than 

double the average protection gap (Table 1(b)). Underinsurance is 
both economically large and widespread, as 71% of expected damages 
and 88% of sample households are underinsured. The distribution 
of underinsurance shows the concentration of highly underinsured 
homes: 20% of homes are underinsured by more than US$10,000 and 

Table 2 | Distribution of protection gaps and underinsurance across household type

Uninsured Uninsured Insured Insured

outside SFHA inside SFHA <US$250,000 at US$250,000

(a) SFRs with protection gap

n 3,306,781 707,383 400,697 643,572

Percentage of n 65.4 14 7.9 12.7

Total estimated AAL (US$2023) 10,856,510,762 3,215,506,281 2,950,145,137 5,844,136,445

Protection gap

  Mean (US$2023) 3,283 4,546 3,658 2,495

  Total (US$2023) 10,856,510,762 3,215,506,281 1,465,937,917 1,605,493,008

  As share of AAL 1 1 0.497 0.275

Percentage of total protection gap 63.3 18.8 8.6 9.4

(b) Underinsured SFRs

n 1,072,620 232,317 166,556 450,754

Percentage of n 55.8 12.1 8.7 23.4

Total estimated AAL (US$2023) 10,011,085,084 2,871,795,238 2,578,022,367 5,411,405,647

Underinsurance

  Mean (US$2023) 9,333 12,362 7,845 3,313

  Total (US$2023) 10,011,085,084 2,871,795,238 1,306,604,489 1,493,262,509

  As share of AAL 1 1 0.507 0.276

Percentage of total underinsurance 63.8 18.3 8.3 9.5

This table presents the distribution of protection gaps (a) and underinsurance (b) across different types of SFRs. Dollar values are presented in 2023 US$. Statistics for (b) are derived from  
the sample of positive flood risk SFRs for which purchasing full coverage of flood insurance is optimal. We assume full coverage is optimal for an SFR if the annual premium is less than or  
equal to AALs.

Table 3 | Flood underinsurance for different return periods

1/20 1/100 1/200 1/500

Inside SFHAs

Share underinsured 0.38 0.62 0.72 0.8

Mean underinsurance (US$2023) 55,597 103,490 124,944 150,618

Median underinsurance 
(US$2023)

0 53,530 84,682 111,894

Standard deviation 
underinsurance (US$2023)

237,120 268,998 285,757 324,187

Mean AAL (US$2023) 117,533 216,516 261,527 293,401

Median AAL (US$2023) 79,201 194,361 231,702 258,204

Outside SFHAs

Share underinsured 0.37 0.72 0.88 0.93

Mean underinsurance (US$2023) 59,369 136,209 185,910 223,966

Median underinsurance 
(US$2023)

0 106,781 165,842 199,728

Standard deviation 
underinsurance (US$2023)

148,468 190,231 200,815 218,090

Mean AAL (US$2023) 70,551 166,075 237,201 278,183

Median AAL (US$2023) 0 138,665 208,182 245,717

This table presents underinsurance statistics for different flood return periods. For example, 
1/20 refers to a 1-in-20-year flood event. Statistics are derived from the sample of positive 
flood risk SFRs for which purchasing full coverage of flood insurance is optimal. We assume 
full coverage is optimal for an SFR if the annual premium is less than or equal to AALs.
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they account for 80% of the total dollar amount of underinsurance 
(Extended Data Fig. 2).

The dollar distribution of underinsurance across household types 
is identical to that of protection gaps, although the distribution of 
underinsured properties differs (Table 2(b)). Uninsured properties 
outside SFHAs represent 56% of underinsured SFRs. Properties that 
are insured up to the NFIP coverage limit of US$250,000 represent 
23% of all underinsured SFRs. The results suggest two types of fric-
tions affecting a majority of households. First, uninsured SFRs outside 
SFHAs may have inaccurate beliefs about flood risks due to information 
frictions29,30. Second, insured SFRs constrained by the NFIP coverage 
limit face institutional frictions and require a policy change to alleviate 
underinsurance. Both frictions are less prevalent for the remaining 
SFRs because they either hold insurance below the maximum coverage 
or receive flood risk disclosures due to residing inside SFHAs.

Severe events
Underinsurance increases as flood severity increases from a 1-in-20-year 
return period to a 1-in-500-year return period (Table 3). Inside SFHAs, 
depending on the flood severity, underinsured rates range from 38%  
to 80%, with average underinsurance of US$55,597 to US$150,618,  
while outside SFHAs underinsurance rates range from 37% to 93%, 
with average underinsurance of US$59,369 to US$223,966. Under-
insurance for a 1-in-20-year event would result in a certain and large 
financial expenditure for the 19% of households who live in the same 
housing unit for longer than 20 years. As events become more severe, 

underinsurance diverges by SFHA status. Underinsurance grows more 
for households outside SFHAs even though events inside SFHAs are 
more damaging, potentially due to documented behavioural frictions 
that lead uninformed households to incorrectly assess tail risks34,36,41.

Geographic distribution
Total underinsurance is largest in the coastal Mid-Atlantic and South 
Atlantic regions, which are most likely to be affected by floods resulting 
from hurricanes and tropical storms (Extended Data Table 3). However, 
the inland East North Central, East South Central, Mountain West and 
West North Central regions experience the highest underinsurance 
rates (95–98%) and average amounts (US$9,782 to US$12,880). Under-
insurance in these regions reflects damages from some of the highest 
rates of severe convective storms and inland flooding in the country28. 
Mapping these patterns show that Appalachian and Midwest counties 
have higher underinsurance than the Atlantic and Gulf coasts (Fig. 1). 
Higher underinsurance rates in these areas may be due to FEMA flood 
maps, which mostly cover coastal areas, providing incorrect signals 
about inland flood risk29,30.

Income and minority composition
We consider the distribution of underinsurance with respect to income, 
race and ethnicity. Underinsurance shares and amounts are higher in 
tracts with lower median household income (Fig. 2a,c). For the low-
est three income deciles, the underinsured share is greater than 90% 
and average underinsurance accounts for more than 18% of annual 

<US$500
[US$500–US$1,000)
[US$1,000–US$2,500)
[US$2,500–US$5,000)
[US$5,000–US$10,000)
US$10,000+
No data

a

b

(0%–25%)
[25%–50%)
[50%–75%)
[75%–95%)
95%+
No data

Fig. 1 | Geographic distribution of flood underinsurance. a,b, County-level 
average of expected underinsurance (a) and percentage of at-risk properties 
facing underinsurance (b). Negative values of underinsurance are set to zero. 
Statistics are derived from the sample of positive flood risk SFRs for which 

purchasing full coverage of flood insurance is optimal and for counties with at 
least 20 such properties. We assume full coverage is optimal for an SFR if the 
annual premium is less than or equal to AAL. The sample includes 2,170,588 
properties located in 2,222 counties.
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household income. Average underinsurance for the highest three 
income deciles is less than 5% of household income. Underinsured 
share is not strictly decreasing in tract income. The underinsured share 
is higher for the top income decile than the eighth income decile. But 
average underinsurance as a share of income is strictly decreasing in 
tract income. Insured share increases by income, which suggests that 
higher income households are not more likely to self-insure (Extended 
Data Fig. 3). Instead, the uptick in underinsured share at the highest 
income deciles is potentially due to the US$250,000 coverage limit 
not being sufficient for higher value properties. Areas with the lowest 
minority shares, defined as the share of Hispanic and Black individuals 
in the tract, have the highest underinsured shares (Fig. 2b). However, 
the gradient remains relatively flat across the remainder of the minor-
ity share deciles. The pattern for average underinsurance as a share of 
income is nearly monotonic as tracts with lower share of minorities 
experience higher underinsurance (Fig. 2d). The latter finding is con-
sistent with recent studies, which document that areas with the largest 
disaster losses and the highest levels of unpriced climate risks tend to 
have a higher share of White residents9,28.

Climate beliefs
Inaccurate household beliefs of future flood risks can lead to sub
optimal insurance decisions34,36,41. We consider this mechanism by 
estimating correlations between the average tract-level underinsurance 
and various measures of climate beliefs. If information constraints 
bind, households who believe climate risks are lower should be more 
underinsured. We restrict this regression to households that hold less 
than the NFIP coverage limit of US$250,000 to avoid conflating insti-
tutional constraints with information constraints as determinants of 
underinsurance.

We use three different measures to proxy climate beliefs: the 
county share of Yale Climate Opinion Survey of 2023 respondents who 
think global warming will cause a moderate or great deal of personal 
harm; tract share of registered Republican voters; and tract share of 
college-educated residents11,12. Our controls include AAL as an objective 
measure of flood risks and previously analysed indicators of climate 
information frictions, such as SFHA status and household income35. 
We account for additional confounders by adding state fixed effects 
and controls for financial, demographic and housing characteristics 
(Methods).

All three indicators of climate beliefs are strongly correlated with 
tract-level underinsurance (Extended Data Table 4). Converting log 
changes to percentage changes, our estimates imply that a 10% higher 
share of survey respondents perceiving personal harm from global 
warming is associated with 28.5% lower underinsurance. These cor-
relations remain economically and statistically significant when all 
three indicators are included together in the regression. Perception of 
personal harm shows the strongest correlation, as a 10% higher share is 
associated with 18.1% lower underinsurance, suggesting that beliefs of 
climate damages may be more salient for household insurance demand 
than expectations of government responses and financial sophistica-
tion, as proxied by political affiliation and education, respectively.

Discussion
We find that US$17.1 billion of expected flood losses would be uninsured 
annually for SFRs, representing 70% of total flood losses. Nearly the 
entire protection gap (US$15.7 billion) is economically inefficient. 
Among homes with positive expected flood losses and an optimal 
demand for full flood insurance coverage, 88% are underinsured by 
an average of US$7,208. Homes outside SFHAs account for the majority 
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Fig. 2 | Underinsurance by tract income and minority composition. a,b, Census 
tract-level average underinsured share (percentage of properties with expected 
flood damage that exceeds insurance coverage) by tract-level median household 
income deciles (a) and minority share deciles (b). c,d, Tract-level average 
underinsurance as share of each tract’s median household income by tract-level 
median household income deciles (c) and minority share deciles (d). Income 
and minority shares are sorted from low (decile 1) to high (decile 10). Minority 

share is defined as the share of Hispanic and Black individuals in the census 
tract. Bars show tract-level mean values (weighted by number of properties) 
within each decile and orange error bars show the 95% confidence intervals (CI; 
mean ± 1.96 × s.e.m.). Sample size is 15,499 tracts in a and c and 15,505 tracts in b 
and d. Sample includes tracts with at least 20 properties with positive flood risk 
for which purchasing full coverage of flood insurance is optimal. We assume full 
coverage is optimal for an SFR if the annual premium is less than or equal to AAL.
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of total underinsurance, suggesting that existing flood maps do not 
comprehensively capture flood risk. Distributional analysis shows 
that inland areas, poorer tracts and areas with a higher share of White 
residents face the largest insurance deficits. Our results imply that exist-
ing NFIP insurance coverage leaves agents in housing and mortgage 
markets exposed to physical climate risks. As underinsurance is large 
both inside and outside SFHAs, the findings suggest frictions in both the 
risk information and regulatory compliance purposes of flood maps.

Our findings present considerations for policies to manage flood 
risks. Pricing flood risk through insurance premiums is a key policy 
lever and has been a large focus of the related literature. Although we 
do not explicitly model insurance demand, we consider whether flood 
insurance would be financially beneficial if premiums increase to reflect 
flood risks. We conduct a simple cost-benefit analysis and compute 
financial gains of holding flood insurance under different insurance 
premium assumptions.

We calculate property-level financial gains from flood insurance 
as the amount of insurable expected flood damages minus premiums 
if the household purchased the maximum allowed coverage from the 
NFIP. We assume households pay relatively high local prevailing prices, 
using the mean, median, 75th and 99th percentile of premiums for 
insured homes in the same tract and flood zone. We also estimate finan-
cial gains assuming pricing under Risk Rating 2.0, which transitioned 
towards actuarially fair prices and increased insurance premiums by 
11%, on average, by 2023.

Average financial gains of purchasing insurance range from 
US$5,617 to US$8,937, depending on SFHA location and insurance 
status, if households faced the 99th percentile of local premiums 
(Table 4). Furthermore, 70–92% of households would financially ben-
efit from purchasing flood insurance even if they faced the highest 
prevailing local premiums. If households faced the average premiums 
in their tract and flood zone under Risk Rating 2.0, average financial 
gains would range from US$6,786 to US$10,037 with 82–86% benefit-
ting. Gains from purchasing insurance under Risk Rating 2.0 premiums 
are highest for areas with lower incomes and lower minority shares 
(Extended Data Fig. 4).

While our analysis seems to suggest that higher premiums  
would improve NFIP solvency without reducing coverage, underinsur-
ance is substantial even with lower prices and larger financial gains. 
One explanation may be that the benchmark optimum in our analysis 
does not capture financial constraints (for example, low liquidity  
or lack of credit access) that make insurance unaffordable. Analyses 

of past increases to NFIP premiums show reductions in household 
coverage35,42. Alternatively, households may face non-financial  
constraints that reduce insurance demand even when pricing is  
actuarially favourable. Existing literature finds that households’ willing
ness to pay for flood insurance is lower than its benefits32. While we  
cannot test the presence of financial constraints, the result that proxies 
of inaccurate beliefs are strongly correlated with higher underinsur-
ance provides evidence to support information frictions as a salient 
factor for household insurance demand.

Taken together, our findings have several implications for flood 
risk management. First, the large estimated financial gains from buying 
flood insurance imply that implementing mandated long-term flood 
insurance policies may substantially increase welfare43–45. Second, as 
most of total flood underinsurance comes from households without 
any flood insurance and properties located outside SFHAs, increasing 
the NFIP policy limit may not substantially lower underinsurance. On 
the other hand, expanding FEMA flood maps to better reflect flood 
risks may increase demand for flood insurance and deter settlement 
in risky areas22. Similarly, levees can create a false sense of safety, which 
can cause insufficient demand for flood insurance and private adapta-
tion46. Studies find that underinvestment in private adaptation against 
floods is driven by inaccurate risk perceptions, inadequate capitaliza-
tion of adaptation investments into home prices and insurance market 
regulations that distort the risk information embedded in insurance 
premiums11,30,36,45,47. Our finding that climate beliefs are strongly cor-
related with underinsurance implies that inaccurate risk perceptions 
are also a key driver of low flood insurance uptake. Consequently, 
households that underestimate flood risk not only underinvest in 
adaptation, but are also more likely to be underinsured. Policies that 
reduce information frictions and correct inaccurate beliefs could 
reduce underinsurance.
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Methods
Data sources
We combine several data sources to measure flood underinsurance for 
SFRs in the contiguous USA.

FSF. Data from the FSF provide both current estimates and 30-year 
projections of property-level flood damage in US dollars, and have 
been regarded as some of the best publicly available estimates of flood 
risk in the USA29,48–52. The FSF’s methodology can be summarized in 
three broad steps.

First, the FSF simulates the physical flow of water through geography 
based on the open source hydrodynamic model, LISFLOOD-FP. This 
model accounts for features such as elevation, proximity to water and 
adaptation measures, such as levees. Importantly, the model incorporates  
four types of flooding: fluvial (riverine flooding), pluvial (resulting from  
heavy rainfall), tidal and storm surge. Model outputs perform well when  
validated against historic flood reports, government flood claims and pre-
cise local flood hazard studies conducted by the US Geological Survey53–55.

Second, the FSF combines its hydrodynamic model with climate 
projections to simulate the breadth and depth of flooding across 
different climate scenarios. These scenarios, from Coupled Model 
Intercomparison Project Phase 6 (CMIP6) simulations, project future 
environmental changes, such as carbon emissions, sea level rise and 
precipitation patterns. The CMIP6 models are used by the United 
Nations’ Intergovernmental Panel on Climate Change in their latest 
assessment report about the state of scientific, technical and socio-
economic knowledge on climate change. We use the FSF’s projections 
under CMIP6 Shared Socioeconomic Pathways 2–4.5, which is consid-
ered to be the most realistic future climate scenario.

Third, the FSF uses a private engineering firm, Arup Corporation, 
to map flood depth to property damage. This step adds the inventory 
of buildings to the modelled flooding under different climate scenarios 
from the first two steps. Arup provides damage functions, which are 
derived from engineering principles, evidence of damage from past 
floods and current building standards, to estimate the reconstruction 
costs after damage from flooding. These functions also account for 
the type and material of each building, including features such as a 
basement and first-floor elevation.

The FSF methodology provides distinct advantages over existing 
measures of flood risk, such as FEMA’s flood maps that are used to define 
federal policies on NFIP pricing and mandatory purchase requirements. 
The FSF model better captures floods from rainfall and ungauged streams 
and therefore improves coverage of inland flood risks. In addition to AAL 
in US dollars, the FSF data also include details about the loss distribution 
by providing expected damage for events of varying likelihoods.

NFIP. We merge the flood damage data to administrative data on flood 
insurance policies from the NFIP. However, this data lacks the geographic 
granularity necessary to link policies to properties by geographic loca-
tion alone. Therefore, we assign the highest observed coverage limits 
to the homes with the largest expected losses. This assumption ensures 
that we measure a lower bound on underinsurance, because the riskiest 
properties in our merged data set have the most coverage.

Additional data sources. We incorporate Census Bureau data on 
tract-level income and demographic characteristics to conduct our 
distributional analysis. For additional analysis in the Article, we gather 
publicly available data from (1) policy premiums under FEMA’s Risk 
Rating 2.0 pricing proposal; (2) the Yale Climate Opinion Map, 2023, 
provided by the Yale Program on Climate Change Communication 
(YPCCC); and (3) L2 voter data.

Sample construction
We merge FSF parcel-level data with their nearest neighbour, by Euclidean  
distance, in CoreLogic property data. We use CoreLogic to identify 

which properties are SFRs. We then map all these properties to census 
tracts, using 2010 map delineations. This results in a cross-section  
of virtually all SFR properties in the USA (FSF and CoreLogic coverage 
permitting) linked to FSF flood risk measures and damage estimates.

Second, we merge the above set of properties with the NFIP 
redacted policy data under an adverse selection assumption, described 
in more detail below. As our FSF data use estimates for the year 2022, 
we want to identify all policies in effect at the start of 2022. To capture 
a snapshot of active policies in 2022, we keep policies with start dates 
from 2021Q2 through to 2022Q1, which ensures that there is no more 
than one policy per home, as NFIP policies must be renewed every year. 
As with our set of FSF-CoreLogic matched properties, we only use NFIP 
policies taken out on SFRs.

As NFIP policy data do not contain addresses or detailed geoco-
ding, we use an adverse selection assumption to match the policies to 
the properties in our FSF-CoreLogic data. We first classify all policies 
by census tract, flood zone designation (for example, ‘A’, ‘V’, ‘X’) and 
the year the home was built. Within these cells defined by property 
characteristics, we rank policies by insurance coverage amount, from 
highest (a maximum of US$250,000) to lowest. We also incorporate 
deductibles as a tie-breaker for a given amount of flood insurance. If 
two homes have the US$250,000 maximum in flood insurance cover-
age, the home with the higher deductible receives the highest rank.

We perform an analogous ranking exercise with the FSF-CoreLogic 
data, assigning homes within each cell the highest ranking if they have 
the highest AAL, as estimated by the FSF. For each property, the FSF 
provides the 10th, 50th and 90th percentile of AAL; we use the 50th 
percentile. We then merge NFIP policies to FSF-CoreLogic properties by 
census tract, flood zone, year built and the above-described ranking. As 
not all policies merge in the first step, we iterate on this process, system-
atically relaxing the granularity of these policy and home characteristic 
cells, reranking the remaining policies and homes within each cell and 
merging again, until virtually every NFIP policy is matched to a home. 
We perform this ranking and merge in the following six sequential steps:

(1)	 Census tract-by-flood zone designation-by year built;
(2)	 Census tract-by-SFHA-by year built;
(3)	 Census tract-by-SFHA-by decade built;
(4)	 Census tract-by-SFHA;
(5)	 County-by-SFHA; and
(6)	 County.

Flood zone designation refers to the alphabetic assignments A, 
B, C, D, X and V. Therefore, in step (1), a property is matched to an 
NFIP policy if the alphabetic assignment matches exactly. In steps 
(2) through to (5), SFHA signifies whether the property is located in 
an SFHA, defined as having a flood zone designation of A or V. A total 
of 68% of our matched policies merge in step (1), while 97% merge on 
or before step (4). In total, we match 3,420,751 NFIP policies to SFRs, 
excluding only 6,500 NFIP policies (0.19%) from our sample that we 
are unable to match through the above process.

The final property-level sample contains 92.3 million SFRs. The 
combination of adverse selection assumption and the imperfect cover-
age of the FSF and CoreLogic implies that the underinsurance quanti-
ties presented in this Article can probably be interpreted as lower 
bounds. The total AAL for our sample of SFRs is US$24.4 billion. A 
previous study finds that the AAL for all properties is US$36.8 billion 
(published as US$32.1 billion in 2021 US$), suggesting our damage esti-
mate may be too large because our sample does not include non-SFR 
properties27. The main driver of the discrepancy comes from the dif-
ference in data version. Our Article uses the more recent v.3 of the FSF 
data, while the other study use v.1. Using v.1, we find that the AAL for 
all SFRs is US$17.5 billion and the AAL for all properties is US$34.6 bil-
lion, which is very close to existing estimates of AAL27. The remaining 
discrepancy is probably driven by the difference in the data source 
for repair costs. We use repair costs directly provided by the FSF data, 
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while the other study used ‘a variety of sources’ to compute structure 
valuation and repair costs.

For the tract-level analyses, we build the tract-level sample from 
the property-level sample using the 2010 census tract delineation. Tract 
characteristics such as median household income and minority share 
were collected from the 2015–2019 five-year American Community 
Survey. Minority share is defined as the share of Hispanic and Black 
individuals in the census tract. We use each year’s January Consumer 
Price Index from the US Bureau of Labor Statistics to adjust for inflation 
on the median household income quantities. Additionally, we restrict 
our tract-level analyses to a total of 15,498 tracts that have at least 20 
homes with positive AAL. This restriction reduces the geographic 
footprint from the 44,320 tracts used in our SFR-level analysis, but it 
does not substantially limit the set of properties used in the tract-level 
analysis, as 8.2% of SFRs are dropped.

Measures of underinsurance
Our goal is to estimate expected protection gaps and underinsur-
ance for flooding, conditional on expected flood losses and existing 
insurance coverage. First, we must calculate the below expectation to 
estimate the protection gap. For each property, we define the protec-
tion gap, Gi, as the expected amount of flood losses that would not be 
covered by flood insurance for a property i across the distribution of 
flood events j. This calculation abstracts away from policy deductibles, 
which we consider in our robustness exercise (Methods).

Gi = E (max{0,Dij − Ci})

For events with damages, Dij, lower than the coverage limit, Ci, insurance 
payouts are capped by damages. Therefore, properties that have more 
coverage than damages from all possible events have no protection 
gap. Furthermore, as the term inside the expectation is nonlinear, the 
protection gap does not equal max{0,E(Dij) − Ci, which could be easily 
estimated as the difference between expected losses (AAL) and insur-
ance coverage limit. Instead, we calculate the expectation using event 
probabilities and damages from FSF’s flood scenario loss estimates for 
the following return periods: 5 years, 20 years, 100 years, 200 years 
and 500 years.

For each property–scenario pair, FSF provides the 10th, 50th and 
90th percentile of repair cost. We use the 50th percentile number for 
all of our underinsurance calculations. For a specific return period,  
rj, the inverse of each return period defines the exceedance probability, 
Pj, which measures the likelihood with which annual damage will exceed 
or equal the loss estimate for the return period, Dj:

P j ≡ P(Di ≥ Dij) =
1
r j

for r j ≥ 1.

For example, annual flood damage for a property would exceed the 
five-year return period loss estimate with a likelihood of one-fifth.

As the exceedance probability is 1 − FD, where FD is the cumulative 
loss distribution, the expected losses can be calculated as the area under 
the exceedance probability curve. We estimate the expected protec-
tion gaps using the discrete set of return periods available from FSF as

̂Gi =
J
∑
j=1

(P j−1 − P j) ×max{0,Dij−1 − Ci}.

Specifically, for each scenario and home, we subtract the home’s insur-
ance coverage from the estimated scenario loss amount to compute a 
dollar amount of deficit. We then perform step-wise integration over 
these five probabilistic protection gap estimates for each home, such 
that the loss estimate remains flat across the density between flood 
return periods. For instance, we assign the 5-year flood underinsurance 
estimate for the density between a 5-year flood and a 20-year flood  

(the next likeliest return period in the data) and the 20-year estimate 
for the density between a 20-year flood and a 100-year flood. Similarly, 
as we have no estimate for return periods shorter than 5 years, under-
insurance is equal to 0 for all shorter return periods.

We define economic underinsurance as protection gaps faced by 
households for whom it is optimal to purchase full flood coverage. 
Using ̂Gi, we estimate underinsurance as

̂Ui = �(pi ≤ E(Di)) × ̂Gi.

In the above equation, the indicator function determines the sample 
of SFRs that have optimal demand for full insurance by comparing the 
annual cost, pi, of full insurance coverage for each property with its 
AAL, E(Di). However, we do not directly observe the cost to fully insure 
most SFR homes, either because they are uninsured or because full 
coverage would exceed US$250,000. We assume full coverage for each 
property is equivalent to its FSF-estimated rebuild cost. For fewer than 
1,500 properties that lack a rebuild cost value, we assign them the tract 
median rebuild cost. Then, for properties that match to an NFIP policy, 
we scale the observed premium by building coverage to obtain the per 
dollar coverage premium. For properties with no such match, we use a 
local mean premium (tract-by-SFHA) taken of only homes purchasing 
US$250,000 in coverage. We multiply this per coverage dollar cost by 
the property rebuild cost to obtain the annual full coverage premium, 
and keep in the sample only properties for which this full coverage 
premium is less than or equal to AAL.

This method produces a lower bound estimate of expected protec-
tion gaps and underinsurance for each home, because we use the least 
severe loss estimate within the interval between two consecutive return 
periods. Visually, our approximation of the expected underinsurance 
aggregates the area of the white rectangles to the right of the coverage 
limit line Ci and under the exceedance probability curve (Extended Data 
Fig. 1). As a result, we underestimate the true expected underinsurance 
for our household sample by the area of the grey regions.

Financial gains of insurance under various prices
First, we compute the benefits an underinsured home would receive 
from flood insurance as the expected flood damage in each flooding 
scenario capped at the NFIP coverage maximum of US$250,000. Sec-
ond, we estimate counterfactual annual premiums for each policy. 
Third, we compute the financial gain for each flooding scenario by 
subtracting the counterfactual premium from the expected insurance 
gain amount, including the scenario where no flooding occurs. As our 
sample focuses on households with optimal demand for full insur-
ance, we assume that every exposed homeowner buys a policy with 
the maximum coverage allowed by the NFIP.

The first set of counterfactual considers local prevailing prices, 
where we calculate the mean, median, 75th and 99th percentile of 
premiums for US$250,000 worth of coverage within each property’s 
census tract and SFHA designation. Premiums can be assigned in this 
manner for 1,663,356 homes, over 86% of underinsured homes. There is 
no active NFIP policy in some census tracts from which to estimate local 
premiums; therefore, another 242,150 homes are assigned premiums 
from the distribution of local premiums at the county-by-SFHA level. 
For 16,742 homes, premiums are assigned at the state-by-SFHA level.

The second counterfactual considers FEMA’s Risk Rating 2.0 
pricing approach, which prices flood insurance policies in a more 
actuarially fair manner. Specifically, we gather publicly available data 
on policy premiums under FEMA’s proposed pricing. The data are 
available at https://www.fema.gov/flood-insurance/work-with-nfip/
risk-rating/single-family-home. The data provide zip-code-level aver-
age premium increases under Risk Rating 2.0 relative to premiums from 
September 2022. We scale existing policy premiums in our data by these 
zip-code-level premium increases to estimate the counterfactual for 
each policy under Risk Rating 2.0.
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Climate beliefs and underinsurance
We estimate equation (1) by aggregating the sample of homeowners 
who have an optimal demand for full insurance coverage (that is, their 
annual premium is less than or equal to expected annual losses) to a 
census tract-level average underinsurance amount. We further focus on 
the sample of homeowners who hold less than the FEMA coverage limit 
of US$250,000 of flood insurance. This restriction allows us to better 
identify the role of information constraints (for example, beliefs about 
climate risk) in underinsurance, as households below the maximum 
coverage limit should not be affected by other institutional constraints. 
We keep tracts with at least 20 homes in the sample.

log(1 + Uc) = α + βIc + γXc + λs + εc (1)

This regression estimates the correlation (β) between census tract-level 
climate beliefs, Ic, and underinsurance, Uc, while controlling for census 
tract-level characteristics, Xc, and state fixed effects, λs. α is a constant 
and εc is an error term. We obtain three measures of climate beliefs, Ic, 
as follows. First, we calculate the share of residents in the county who 
respond to the question ‘how much do you think global warming will harm 
you personally?’ with ‘a moderate amount’ and ‘a great deal’ in the Yale 
Climate Opinion Maps from 2023. The data are provided by the YPCCC56,57. 
Second, we obtain the share of voters in the census tract who are regis-
tered Republican from the 2021 census block aggregated L2 voter file 
(and aggregate to the census tract-level) to capture divergence in beliefs 
of climate risks by political affiliation as well as expectations of govern-
ment support after disasters. Third, we measure the share of residents in 
the census tract who have obtained at least a bachelor’s degree from the 
American Community Survey (2015–2019) as an indicator of consumer 
sophistication and knowledge of financial products such as insurance.

In addition to state fixed effects, equation (1) includes the fol-
lowing census tract-level measures as control variables, Xc: the log of 
mean AAL and the share of homes in the SFHAs from FSF, the log of the 
number of housing units, the share of residents who identify as Black 
or Hispanic, the share of homeowners with a mortgage, the log of 
median income and the log of median home value from the American 
Community Survey adjusted to 2022 dollars by the FHFA house price 
index, which is available at www.fhfa.gov/data/hpi.

Robustness
We check the robustness of our findings by relaxing three assump-
tions made in our analysis. First, we account for policy deductibles 
by not counting them as underinsurance, instead interpreting them 
as expected out-of-pocket expenses for homeowners. To estimate 
the distribution of flood underinsurance with deductibles, we follow 
the same method as our underinsurance calculation but adjust each 
home’s insurance coverage by adding the deductible amount. We 
consider the insurance deductible as the amount the homeowner is 
willing to pay out-of-pocket in the event of flood damage. Accordingly, 
we match deductibles to homes in a similar fashion as we do for flood 
insurance coverage; that is, at a given amount of insurance coverage, 
the homes with the highest expected flood losses are assigned the 
highest deductibles. Therefore, we interpret underinsurance after 
accounting for deductibles as the amount a household needs to pay 
beyond their expected out-of-pocket expenses.

Second, we produce an estimate of the flood underinsurance 
distribution that accounts for the regulatory limitation on NFIP sup-
ply. To do so, we cap flood damages from all flood events, j, for each 
property, i, at the NFIP coverage maximum of US$250,000. Therefore, 
the insurance deficit used to calculate underinsurance is adjusted to be

δij = max{0,min{Dij,US$250,000} − Ci}.

The resulting estimate reflects the amount of underinsurance that 
could be fully offset with NFIP coverage.

Third, we account for private flood insurance that might eliminate 
underinsurance for some households. We estimate the number of poli-
cies held by the private market in each state and assume those private 
policies fully cover losses for the most underinsured homes within 
each state. The share of flood insurance policies currently estimated 
to belong to the private market is 4.5% nationwide, with 20% of these 
private policies located in Florida and another 20% in Puerto Rico58. We 
estimate the number of nationwide private policies as

Private policies = NFIP policies
1 − 0.045⏟⎵⎵⎵⏟⎵⎵⎵⏟
Total policies

−NFIP policies.

We distribute these private policies among the states by first assigning 
Florida its disproportionate share and then assign the remaining pri-
vate policies among the remaining states in proportion to the number 
of NFIP policies held in each state. As Puerto Rico is not included in 
our data, we assign Florida 25% of US private policies, that is, 20% of 
the remaining 80% once Puerto Rico is removed. Within each state, 
we assign private policies to properties with the highest underinsur-
ance in that state and assume those private policies insure against 
100% of those losses. By assuming private insurance covers the most 
underinsured homes, this method produces a lower bound estimate 
for underinsurance with NFIP policies without requiring a model of the 
demand for private flood insurance.

Relaxing these assumptions does not substantially change our 
findings. Total underinsurance ranges from US$11.9 billion to US$15.6 
billion, or 76% to 99% of our main underinsurance results (Extended 
Data Table 1). Underinsurance remains high as a share of expected 
damages, ranging from 54% to 71% of AAL. The distribution of under-
insurance by household types is also similar to our main results, with 
uninsured households outside SFHAs comprising the majority of 
underinsurance (Extended Data Table 2).

Note that our measure of underinsurance does not account for 
federal disaster assistance grants and loans. Grants to restore property 
damage are small, totalling US$349 million per year from 2014 to 2023, 
which is less than 1.5% of expected annual flood damages. While disas-
ter loans comprise a larger share of aid, they should not crowd out the 
optimal insurance demand for our underinsurance estimation sample. 
Purchasing insurance coverage for property damage is cheaper than 
borrowing an equal amount of disaster loans—the insurance premium 
is lower than expected damages while loan repayment is greater than 
or equal to expected damages and can require collateral for securitiza-
tion59. Furthermore, the regressive nature of disaster assistance alloca-
tion would further exacerbate the disparity in coverage by income as 
we observe low-income populations to be most underinsured21.

Limitations
Our study has several notable limitations. First, AAL from the FSF are 
model-generated and, thus, contain a degree of uncertainty from mod-
elling assumptions, methods and choice of historical data. We take the 
point estimates as-is as we cannot quantify this uncertainty. Second, our 
Article focuses on SFRs and cannot measure uninsured flood risk that 
other property types face. Furthermore, our focus on SFRs measures 
the financial risks faced by the owners of these properties, which would 
understate the climate risks faced by minority populations who have 
lower home ownership rates. Third, we do not consider future climate 
scenarios because existing models of such scenarios do not account for 
adaptive behaviours (for example, migration and disaster mitigation). 
Last, our analysis on rising insurance premiums uses estimated local 
premiums, which may differ from the NFIP’s actual premium schedule.

Data availability
The property-level flood damage estimates and projections that 
support the findings of this study are available from the FSF, and the 
property characteristics used to define the sample are available from 

http://www.nature.com/natureclimatechange
https://www.fhfa.gov/data/hpi


Nature Climate Change

Article https://doi.org/10.1038/s41558-025-02396-w

CoreLogic. Both datasets were used under licence and are not publicly 
available due to restrictive data sharing agreements. The following data 
in the study are publicly available. The study was conducted using v.1 
of the publicly available National Flood Insurance Program redacted 
policies data. While v.1 is no longer provided on the FEMA website, an 
updated version of the data with additional fields is available at www.
fema.gov/openfema-data-page/fima-nfip-redacted-policies-v2. Cli-
mate change beliefs survey data are made available by the YPCCC at 
climatecommunication.yale.edu/visualizations-data/ycom-us/. This 
analysis was conducted using data from the Redistricting Data Hub. 
Voter registration data are available from L2 at redistrictingdatahub.
org. American Community Survey data were obtained from www.
nhgis.org. Census shapefiles were obtained from www2.census.gov/
geo/tiger/GENZ2019/shp/.

Code availability
The code used for this analysis is available on Zenodo at https://doi.org/ 
10.5281/zenodo.15756729 (ref. 60).
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Extended Data Table 1 | Underinsurance with Various Assumptions

Panel A: Underinsurance with Deductibles

AAL > 0 SFHA only Non-SFHA only

N 2,175,703 741,970 1,433,733

Share Underinsured 0.88 0.792 0.926

Mean Underinsurance ($) 7,186 6,306 7,642

Total Underinsurance ($) 15,635,174,950 4,678,970,562 10,956,204,388

Underinsurance Share of AAL 0.707 0.514 0.843

Panel B: Underinsurance for Damages less than $250,000

AAL > 0 SFHA only Non-SFHA only

N 2,175,703 741,970 1,433,733

Share Underinsured 0.676 0.467 0.785

Mean Underinsurance ($) 5,477 4,228 6,124

Total Underinsurance ($) 11,916,740,510 3,136,841,264 8,779,899,247

Underinsurance Share of AAL 0.539 0.344 0.675

Panel C: Underinsurance after Deducting Private Market Coverage

AAL > 0 SFHA only Non-SFHA only

N 2,134,673 720,048 1,414,625

Share Underinsured 0.881 0.792 0.927

Mean Underinsurance ($) 6,272 5,336 6,748

Total Underinsurance ($) 13,387,947,523 3,842,097,687 9,545,849,836

Underinsurance Share of AAL 0.69 0.484 0.832

Notes: This table presents statistics on underinsurance for a variety of assumptions as a robustness check to results in Table 1, Panel B. All statistics are derived from the sample of positive flood 
risk SFRs for which purchasing full coverage of flood insurance is optimal. Dollar values are presented in 2023 USD. We assume full coverage is optimal for an SFR if the annual premium is less 
than or equal to average annual losses (AALs). In Panel A of this table, we calculate underinsurance by accounting for deductibles. These results can be interpreted as the amount a household 
is underinsured beyond their expected out-of-pocket expenses (including the deductible). Panel B calculates underinsurance by capping all flood damages at the NFIP coverage maximum of 
$250,000. Panel C accounts for the presence of private flood insurance, by assuming the most underinsured homes have private flood insurance policies. We then remove these underinsured 
homes from our sample to match the relative market share of private insurance, as estimated by the literature.
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Extended Data Table 2 | Distribution of Underinsurance Across Household Type

Panel A: Underinsurance with Deductibles

Uninsured Outside SFHA Uninsured Inside SFHA Insured < $250k Insured at $250k

N 1,072,620 232,317 164,781 445,856

% of N 56 12.1 8.6 23.3

Underinsurance

  Mean ($) 9,333 12,362 7,782 3,297

  Total ($) 10,011,085,084 2,871,795,238 1,282,321,173 1,469,971,067

  As Share of AAL 1 1 0.5 0.273

% of Total Underinsurance 64 18.4 8.2 9.4

Panel B: Underinsurance for Damages less than $250,000

Uninsured Outside SFHA Uninsured Inside SFHA Insured < $250k Insured at $250k

N 1,072,620 232,317 166,556 450,754

% of N 55.8 12.1 8.7 23.4

Underinsurance

  Mean ($) 8,005 11,040 4,598 0

  Total ($) 8,586,049,958 2,564,824,950 765,865,602 0

  As Share of AAL 0.858 0.893 0.297 0

% of Total Underinsurance 72.1 21.5 6.4 0

Panel C: Underinsurance after Deducting Private Market Coverage

Uninsured Outside SFHA Uninsured Inside SFHA Insured < $250k Insured at $250k

N 1,057,333 222,278 161,523 440,083

% of N 56.2 11.8 8.6 23.4

Underinsurance

  Mean ($) 8,380 11,387 6,429 2,177

  Total ($) 8,860,161,654 2,531,165,206 1,038,443,764 958,174,500

  As Share of AAL 1 1 0.465 0.211

% of Total Underinsurance 66.2 18.9 7.8 7.2

Notes: This table presents statistics on underinsurance for a variety of assumptions as a robustness check to results in Table 2, Panel B. All statistics are derived from the sample of positive 
flood risk SFRs for which purchasing full coverage of flood insurance is optimal. Dollar values are presented in 2023 USD. We assume full coverage is optimal for an SFR if the annual premium 
is less than or equal to average annual losses (AALs). In Panel A of this table, we calculate underinsurance by accounting for deductibles. These results can be interpreted as the amount a 
household is underinsured beyond their expected out-of-pocket expenses (including the deductible). Panel B calculates underinsurance by capping all flood damages at the NFIP coverage 
maximum of $250,000. Panel C accounts for the presence of private flood insurance, by assuming the most underinsured homes have private flood insurance policies. We then remove these 
underinsured homes from our sample to match the relative market share of private insurance, as estimated by the literature.
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Extended Data Table 3 | Flood Underinsurance By Census Region

East NC East SC Mid Atlantic Mountain West New England

Sample N 122,515 155,108 280,346 69,679 48,029

% Insured 11.9 17.7 26.2 13.1 26.5

Underinsurance

  % Underinsured 98.2 94.8 90.8 96 91.2

  Mean ($) 10,825 12,880 10,013 9,821 10,162

  Total ($) 1,326,230,921 1,997,842,750 2,807,228,163 684,341,136 488,059,003

  As Share of AAL 0.871 0.877 0.79 0.859 0.709

Pacific West South Atlantic West NC West SC

Sample N 300,317 737,494 49,964 412,251

% Insured 23 53.8 12.1 63.5

Underinsurance

  % Underinsured 93.2 83.6 97.3 83.6

  Mean ($) 7,239 6,234 9,782 2,714

  Total ($) 2,173,865,453 4,597,452,647 488,763,537 1,118,966,113

  As Share of AAL 0.744 0.605 0.874 0.511

Notes: This table presents statistics on flood underinsurance rate and deficit by Census region. Sample N represents the set of single-family residences (SFRs) that have positive average annual 
losses (AALs) and for which purchasing full coverage is optimal. We assume full coverage is optimal for an SFR if the annual premium is less than or equal to average annual losses (AALs). 
Dollar values are presented in 2023 USD.
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Extended Data Table 4 | Correlations of Climate Belief Indicators and Underinsurance

(1) (2) (3) (4)

Share Personal Harm -3.357*** ‥ ‥ -2.003***

(0.000) ‥ ‥ (0.001)

Share Republican ‥ 1.240*** ‥ 0.760***

‥ (0.000) ‥ (0.000)

Share with College Degree ‥ ‥ -1.095*** -0.544***

‥ ‥ (0.000) (0.003)

Log(Mean AAL) 0.439*** 0.445*** 0.444*** 0.439***

(0.000) (0.000) (0.000) (0.000)

Share in SFHA -2.453*** -2.443*** -2.465*** -2.454***

(0.000) (0.000) (0.000) (0.000)

Log(No. Housing Units) 0.236*** 0.243*** 0.271*** 0.232***

(0.000) (0.000) (0.000) (0.000)

Minority Share -0.360*** -0.300** -0.897*** -0.245*

(0.000) (0.037) (0.000) (0.059)

Share Homes with Mortgage -0.655*** -0.572*** -0.685*** -0.547***

(0.000) (0.000) (0.000) (0.000)

Log(Median Income) -0.156 -0.977* -0.576 -1.274**

(0.768) (0.081) (0.319) (0.037)

Log(Median Home Value) -0.618 -1.322*** -1.018** -1.516***

(0.168 (0.005) (0.035) (0.003)

Log(Home Value) × Log(Income) 0.047 0.103** 0.087* 0.134***

(0.250) (0.017) (0.056) (0.005)

State Fixed Effects X X X X

N 12,960 12,972 13,146 12,787

p-values in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01 Notes: This table presents coefficient estimates from four different specifications of Equation (1). The dependent variable is the log of 
average tract underinsurance. The indicators of climate beliefs for columns (1) through (3) are county-level share of Yale Climate Opinion survey respondents reporting that global warming will 
harm them personally, tract-level share of voters registered as Republican, and tract-level share of residents with a bachelor’s degree or higher, respectively. Column (4) reports estimates from 
a multivariate regression with all three indicators included. The observations differ based on the data availability of each climate belief indicator. Underinsurance is derived from the sample of 
positive flood risk SFRs who hold below the FEMA limit of $250,000 in flood insurance and for whom purchasing full coverage of flood insurance is optimal. We assume full coverage is optimal 
for an SFR if the annual premium is less than or equal to average annual losses (AALs). The sample includes tracts that have at least 20 properties facing positive current AAL and optimal 
demand for full coverage. Reported p-values are from two-sided t-tests. Standard errors are clustered by state.
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Extended Data Fig. 1 | Illustration of Estimating Protection Gaps and 
Underinsurance. Notes: Illustrative example of the exceedance probability 
curve. The area under the curve measures average annual losses (AALs). For 
damage below the policy coverage limit of Ci, the deficit is zero. For damage 

greater than Ci, we use the areas of the white rectangles as an approximation 
of the protection gap. Therefore, our method yields a lower bound, as we 
underestimate the protection gap by an amount equivalent to the area of the gray 
regions between the exceedance probability curve and the white rectangles.
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Extended Data Fig. 2 | Cumulative Distribution of Underinsurance. Notes: This 
figure plots the distribution of underinsurance. Statistics are derived from the 
sample of positive flood risk SFRs for which purchasing full coverage of flood 
insurance is optimal. Dollar values are presented in 2023 USD. We assume full 
coverage is optimal for an SFR if the annual premium is less than or equal to 

average annual losses (AALs). The blue line plots the unweighted distribution 
and can be interpreted as the share of SFRs with underinsurance below a 
specific amount. The red line plots the dollar-weighted distribution and can be 
interpreted as the share of underinsured dollars below a specific amount. The 
sample includes 2,175,703 properties.
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Extended Data Fig. 3 | Insured Share by Tract Income and Minority 
Composition. Notes: Tract-level average insured share by (a) tract-level median 
household income decile and (b) tract-level minority share decile. Income and 
minority shares are sorted from low (decile 1) to high (decile 10). Minority share 
is defined as the share of Hispanic and Black individuals in the census tract. Bars 
show tract-level mean values (weighted by number of properties) within each 

decile and orange error bars show the 95% confidence intervals (mean +/- 1.96 
× standard error of the mean). Panel (a) has a sample size of 15,499 tracts and 
panel (b) has a sample size of 15,505 tracts. Sample includes tracts with at least 
20 properties with positive flood risk for which purchasing full coverage of flood 
insurance is optimal. We assume full coverage is optimal for an SFR if the annual 
premium is less than or equal to average annual losses (AALs).
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Extended Data Fig. 4 | Financial Gains from Purchasing Flood Insurance by 
Tract Income and Minority Composition. Notes: Tract-level average financial 
gains from purchasing insurance as share of tract’s median household income by 
(a) tract-level median household income decile and (b) tract-level minority share 
decile. Income and minority shares are sorted from low (decile 1) to high (decile 
10). Minority share is defined as the share of Hispanic and Black individuals in 
the census tract. Financial gain is defined as the difference between insurance 
coverage of expected flood damage (capped at $250,000) and estimated 
premiums under Risk Rating 2.0. Financial insurance gain is zero if estimated 

premium exceeds expected flood damage because the homeowner would not 
buy insurance in this scenario. Bars show tract-level mean values (weighted by 
number of properties) within each decile and orange error bars show the 95% 
confidence intervals (mean +/- 1.96 × standard error of the mean). Panel (a) has 
a sample size of 14,394 tracts and panel (b) has a sample size of 14,399 tracts. 
Sample includes tracts with at least 20 properties with positive flood risk for 
which purchasing full coverage of flood insurance is optimal. We assume full 
coverage is optimal for an SFR if the annual premium is less than or equal to 
average annual losses (AALs).
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